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Gaussian unitary ensemble statistics in a time-reversal invariant microwave triangular billiard
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The spectrum of a chaotic two-dimensional quantum billiard with threefold symmetry has been studied in an
experiment with a superconducting microwave cavity. In total 622 eigenvalues were identified experimentally
and compared with numerical calculations. The statistical analysis of the data shows that Gaussian unitary
ensemble statistics can be observed for a spectrum of a time-reversal invariant system.
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For the quantum counterpart of a classical chaotic systerevels corresponding to the two non-time-reversal invariant
the statistical distribution of the energy-eigenvalues is knowrtlasses of wave functions, a triangular billiard’s spectrum
to be well described by random matrix theofi{t—3].  shows a characteristic singlet-doublet structure. If there is a
Whether the statistics follows the Gaussian orthogonal ensmall perturbation which causes a splitting of the doublets, it
semble(GOE), the Gaussian unitary ensemif@UE), or the  is possible to distinguish the eigenvalues of time-reversal
Gaussian symplectic ensemllBSE) depends on the sym- invariant and non-time-reversal invariant eigenmode$5In
metries of the systerfd]. While GUE statistics usually is GUE statistics for the doublets and GOE statistics for the
expected for spectra of non-time-reversal invariant systemsinglets is predicted. To study those effects it was necessary
time-reversal invariant systems with integral spin or rota-to construct a fully chaotic triangular billiard. Numerical
tional invariance should show level-distributions accordingsimulations of the motion in a classical billiard were used to
to GOE. It has been shown that this is not true in general anfind suitable geometries without bouncing ball orbits. We
systems with certain discrete symmetries may have spectichose one particular shagsee Fig. 1 which can easily be
with GUE statistics although they are time-reversal invarianfpparametrized in polar coordinates by
[5]. The most simple example for such a system is a chaotic
two-dimensional billiard with threefold symmetry. This so- r(¢)=ro[1+0.2c0%$3¢)—0.2siM6¢)]. 3
called triangular billiard has a shape that is invariant under
rotations of 120°, while the geometry has no further symmeThe experimental technique used here is to measure the
tries, e.g., mirror-symmetries. For a triangular billiard thereeigenfrequencies of a microwave cavity. In general the elec-
are three classes of eigenfunctions to the Hamiltorlahat  tric field E(r,t)=3 E,(r)e ! inside a cavity is described
have different symmetry propertids,6]. These classes of by the vectorial Helmholtz equation
eigenfunctions can be classified by an integer quantum num-
berl which describes the transformation of the wave function
¥ under a rotatiorR of 120°:

(1)2 > N
A+—2) E.(1)=0, (@
C

HY P =E W], ) )
with the requirement thd tangential vanishes at the bound-
0 2w 0 ary. This implies the assumption that the cavity’s walls are
Ry =exp i1 |¥q" (2)  ideally conducting. In a flat cavity with cylindrical symme-
try, whose extension iz direction is small compared to the
For =0 the wave functions are invariant under time-
reversall and the corresponding field patterns have threefold
symmetry[Eq. (2)]. As T is given by complex conjugation,
these wave functions are real. The other two clasdes (
==*1) have non-time-reversal invariant wave functions,
which are therefore complex, and the field patterns have no
threefold symmetryEq. (2)]. Under time-reversal the eigen-
functions of these two classes are interchanged so that for
every mode withl =+ 1 there exists a time-reversed mode
with |=—1 in the other class and vice versa. Both wave
functionsW? "D and ¥ " D=T¥ D= (¢ *1)* gre eigen-
functions to the same eigenvalue. Therefore, there is no con-
tradiction to the time-reversal invariance of the triangular
billiard, because a complete set of real eigenfunctions always
can be constructed by linear combination of the eigenfunc-
tions to the same eigenvalue. Due to the degeneracy of the FIG. 1. Photograph of the microwave cavity without its lid.
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936 938 940 942 944 946 948 950 This means that the mechanical imperfections of the cavity
Frequency (GHz) and the perturbative influences of the antennas, which are

always present in an experiment and even necessary here,
cause doublet splittings which can be resolved within the
frequency resolution of our setup using a superconducting
microwave cavity with a high quality factor. Typical split-

wavelength of the electric field, the wave propagation belings are in the range from 0.5 to 3.0 MHz. For the investi-

comes two-dimensional and the Helmholtz equation reduce@@t€d spectrum from 1.25 to 25.0 GHz there is no evidence
to the scalar wave equation for a systematic dependence of those splittings on frequency.

The values of the splittings simply scatter around the mean.
Altogether 622 levels up to a frequency of 25 GHz have been
b.,(X,y)=0, (5)  identified. This is in good agreement with the number of
modes expected from the dimensions of the billiard and in-
dicates that in principle each doublet splits up into two indi-
with Dirichlet boundary condition§7], which is equivalent vidual resonances. For frequencies higher than approxi-
to the time-independent Sclimger equation for the quan- mately 25.5 GHz the wave propagation inside the cavity gets
tum billiard. There are only transverse-magnetitM) three-dimensional and no longer serves as a simulation of a
modes with the electric field vectoréw(F)=¢>w(x,y)éZ. quantum billiard. In order to separate singlet and doublet
This means that experimentsee, e.g.[8-11]) where the modes correctly the distance of the two following resonances
eigenmodes of such a cavity are determined serve as analégconsidered. If it is bigger than a maximum value, the two
computers that solve the stationary Sainger equation for ~resonances are not regarded as parts of one doublet. If there
a quantum billiard of the same shape. In the present exper@re three resonances close together the pair with the smaller
ment, as in previous ones at Darmstattee, e.g., distance is counted as a doublet. By taking a value of 8 MHz
[9,10,12,13), a superconducting cavity is used. The qualityfor the maximum splitting the levels are divided into 196
factorQ=f/Af, whereAf is the width of a resonance at the singlets and 213 doublets. As Fig. 3 indicates the maximum
frequencyf, of 10, ...,10 is larger than in the normal Splitting is not a critical parameter, because the number of
Conducting CaseQ~ 103) and therefore allows a better iden- f:loublets almost saturates for VallueS Iarge.-r -than 6 MHz. The
tification of resonances in the spectryfig. 2). The cavity influence of the assumed maximum splitting will be dis-
resonatofFig. 1) consists of a bottom, an inset, and a lid. To cussed later on. Each level sequedég of singlets and
ensure proper electric contact at high frequencies, wires dfoublets defines a level density functipif) ==; 6(f —f;)
solder are placed between the parts of the billiard, which aréor the spectrum. By integration a staircase function
then sandwiched between two steel plates. All parts are .
squeezed by screws. The billiard itself is made from copper _ INAF —
and has a lead/tin surface, which becomes superconducting N(H)= fo P(F)dT"=Nsmoot 1)+ Nrucr(P), ©)
at temperatures below 7.2 K. In the experiment the resonator
is cooled to 4.2 K in a cryostat with liquid helium, where it which consists of a smooth and a fluctuating part, follows.
remains at constant temperature and pressure for severfhe smooth part is given by the Weyl formula
days. The microwaves are coupled into the cavity by dipole
antennas, which are connected to a RF source by microwave NWey(f)=v1f2+v2f+v3 (7)
cables. There are four antennas, which reach into the billiard
through small holes in the lid. The reflected power for eachfor two-dimensional systems and carries no information on
antenna and the transmitted power for each antenna combie dynamics of the system. It describes the mean behavior
nation is measured for the frequency range from 1.25 to 2%vhich only depends on area and perimeter of the billiard
GHz in steps of 10 kHz, so that ten different spectra arecavity [14], while the fluctuating part contains the relevant
obtained. The signals are analyzed by a HP-8510C networikformation. The fluctuating and the smooth part are sepa-
analyzer. The network analyzer is controlled by a personalated by fitting the Weyl formula to the staircase function
computer, which also stores the data. The experimental spewith parameters ;, v,, andvs. For further statistical analy-

FIG. 2. Part of a spectrum measuredlat 77 K andT=4.2 K.
The superconducting cavity at=4.2 K has a higher quality factor
and the spectrum hence shows an improved signal-to-noise ratio.
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FIG. 4. Nearest-neighbor-spacings distributi@nsttom) and in- FIG. 5. Dyson-Mehta statistics for the raw spedinpper parnt
tegrated NNDgtop) for singlets and doublets. and for the corrected specttbbwer par} showing GOE statistics

. . . . . for the singlets and GUE statistics for the doublets.
sis and comparison with theoretical predictions the spectra

have to be unfolded. By using the transformatien  nonuniversal behavior sets in. Furthermore there is no satu-
=Nwey(f;) this procedure leads to spectfa}, with con-  ration behavior. When varying the parameter taken for the
stant mean level densities and mean level spacings normahaximum splitting of the doublets, this behavior does not
ized to 1. First a nearest-neighbor distributi?ND) is con-  disappear. To get a deeper insight, the two sets of eigenval-
sidered. It shows the distributioR(s) of the spacingss;  ues have been compared with a numerical simulation for the
= €11~ € between two neighboring levels. Both GOE and corresponding quantum billiard entirely in the spirit[a6].

GUE statistics imply level repulsion and show a maximumThe comparison shows that about 600 calculated levels can
of the corresponding spacings distributions at the value oflearly be identified in the experimental spectra. It also can
the mean level spacing. This can be seen from the NNDs fase seen that for some frequency ranges the quality factor of
the singlet and the doublet spectiég. 4). A different be-  the cavity still is not high enough to resolve all resonances.
havior of singlets and doublets according to GOE and GUETherefore some triplets, which occur when a singlet and a
can be recognized, although it is difficult to distinguish be-doublet are close together, cannot be resolved as three reso-
tween GOE and GUE statistics by eye. By fitting the curvenances. There are some missing and extra modes, too. In
P(s)=c(a)s®exq —b(a)s’], which generalizes the spacings particular, it is sometimes not possible to distinguish be-
distributions of GOE and GUE, with one fit parametetb  tween singlets and doublets, and pairs of singlets appear
andc depend ora and are fixed due to normalizatipto the  which are taken for doublets because of a small distance.
NNDs the different statistical properties of singlets and dou+urthermore, some doublets show no splitting. With the help
blets can be seen more clearlffig. 4. The fit givesa  of the calculation, however, the few necessary corrections to
=0.90+0.18 for the singlets anad=1.88+0.09 for the dou- the measured set of eigenfrequencies can easily be made.
blets, to be compared with=1.00 anda=2.00 for GOE Finally a total number of 623 levels results, with 207 singlets
and GUE, respectively. A sometimes more sensitive analysiand 208 doublets. The Dyson-Mehta statistics shows perfect
of the so-called short range correlations of the spectra is thegreement with theory when the results of the comparison
integrated NNDI (s) = [ P(s)ds. In a logarithmic plotupper are taken into accouriFig. 5, lower half. This reflects the
part of Fig. 4 small deviations from random matrix theory sensitivity of the long-range correlations on missing or mis-
predictions appear. To discuss the long-range correlations dfiterpreted levels, which usually do not effect the short-range
the spectra, the Dyson-Mehta statistiesl5] is considered. correlations(see, e.g.[17]).

As can be seen from the upper half of Fig. 5, the doublets The anomalous spectral statistics of a chaotic triangular
follow GUE up toL~30 and show an increase of tidg billiard was studied by an experiment with a superconduct-
statistics for larger values df. Such an increase can also be ing microwave cavity providing the necessary frequency
seen for the singlets, which follow GOE up ko=8. Then resolution to resolve doublet splittings, which allowed us to
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separate the eigenvalues of states with different quantumavity with threefold symmetry and extra mirror symmetries.
numbers. The measured spectrum contains approximately tfiehis cavity is presently being investigated and the prelimi-
same number of singlet and doublet modes. About 95% ohary data seem to indicate that the doublets show GOE sta-
the resonances were identified clearly, and a comparisofistics because of the different symmetry properties. This is
with a numerical calculation allowed us to fix the remainingin agreement wit5], as well.

5% of problematic cases. As a result, GUE-like statistics of a

time-reversal invariant system’s spectrum was observed ex- We would like to thank O. Bohigas and T. Seligman for
perimentally. The discussed experiment gives an experimervarious hints and helpful discussions and the Deutsche For-
tal proof of the predictions developed [B]. It should be schungsgemeinschafdFG) for supporting this work under
mentioned here that another experiment was done with &€ontract No. Ri 242/16-1.
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