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Gaussian unitary ensemble statistics in a time-reversal invariant microwave triangular billiard
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The spectrum of a chaotic two-dimensional quantum billiard with threefold symmetry has been studied in an
experiment with a superconducting microwave cavity. In total 622 eigenvalues were identified experimentally
and compared with numerical calculations. The statistical analysis of the data shows that Gaussian unitary
ensemble statistics can be observed for a spectrum of a time-reversal invariant system.

PACS number~s!: 05.45.Mt, 41.20.Jb, 02.60.Cb, 11.30.Er
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For the quantum counterpart of a classical chaotic sys
the statistical distribution of the energy-eigenvalues is kno
to be well described by random matrix theory@1–3#.
Whether the statistics follows the Gaussian orthogonal
semble~GOE!, the Gaussian unitary ensemble~GUE!, or the
Gaussian symplectic ensemble~GSE! depends on the sym
metries of the system@4#. While GUE statistics usually is
expected for spectra of non-time-reversal invariant syste
time-reversal invariant systems with integral spin or ro
tional invariance should show level-distributions accord
to GOE. It has been shown that this is not true in general
systems with certain discrete symmetries may have spe
with GUE statistics although they are time-reversal invari
@5#. The most simple example for such a system is a cha
two-dimensional billiard with threefold symmetry. This s
called triangular billiard has a shape that is invariant un
rotations of 120°, while the geometry has no further symm
tries, e.g., mirror-symmetries. For a triangular billiard the
are three classes of eigenfunctions to the HamiltonianH that
have different symmetry properties@5,6#. These classes o
eigenfunctions can be classified by an integer quantum n
ber l which describes the transformation of the wave funct
C ( l ) under a rotationR of 120°:

HCn
( l )5EnCn

( l ) , ~1!

RCn
( l )5expS i

2p

3
l DCn

( l ) . ~2!

For l 50 the wave functions are invariant under tim
reversalT and the corresponding field patterns have threef
symmetry@Eq. ~2!#. As T is given by complex conjugation
these wave functions are real. The other two classesl
561) have non-time-reversal invariant wave function
which are therefore complex, and the field patterns have
threefold symmetry@Eq. ~2!#. Under time-reversal the eigen
functions of these two classes are interchanged so tha
every mode withl 511 there exists a time-reversed mo
with l 521 in the other class and vice versa. Both wa
functionsC (11) andC (21)5TC (11)5(C (11))* are eigen-
functions to the same eigenvalue. Therefore, there is no
tradiction to the time-reversal invariance of the triangu
billiard, because a complete set of real eigenfunctions alw
can be constructed by linear combination of the eigenfu
tions to the same eigenvalue. Due to the degeneracy o
PRE 621063-651X/2000/62~4!/4516~4!/$15.00
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levels corresponding to the two non-time-reversal invari
classes of wave functions, a triangular billiard’s spectru
shows a characteristic singlet-doublet structure. If there
small perturbation which causes a splitting of the doublets
is possible to distinguish the eigenvalues of time-rever
invariant and non-time-reversal invariant eigenmodes. In@5#
GUE statistics for the doublets and GOE statistics for
singlets is predicted. To study those effects it was neces
to construct a fully chaotic triangular billiard. Numerica
simulations of the motion in a classical billiard were used
find suitable geometries without bouncing ball orbits. W
chose one particular shape~see Fig. 1! which can easily be
parametrized in polar coordinates by

r ~w!5r 0@110.2 cos~3w!20.2 sin~6w!#. ~3!

The experimental technique used here is to measure
eigenfrequencies of a microwave cavity. In general the e
tric field EW (rW,t)5(vEW v(rW)e2 ivt inside a cavity is described
by the vectorial Helmholtz equation

S D1
v2

c2 D EW v~rW !50, ~4!

with the requirement thatEW tangential vanishes at the boun
ary. This implies the assumption that the cavity’s walls a
ideally conducting. In a flat cavity with cylindrical symme
try, whose extension inz direction is small compared to th

FIG. 1. Photograph of the microwave cavity without its lid.
R4516 ©2000 The American Physical Society



be
c

-

a

e

ity
e
l
-

o
s
a
a
pe
ct
at
it
ve
ol
a

ia
c

m
2

ar
o
n
pe

vity
are
ere,

the
ting
-
ti-
nce
ncy.
an.
en
of
in-

di-
oxi-
ets
of a
let

ces
wo
here
aller
Hz
6
um
r of
The
is-

s.

on
vior
rd

nt
pa-
on

r
tio

ken

RAPID COMMUNICATIONS

PRE 62 R4517GAUSSIAN UNITARY ENSEMBLE STATISTICS IN A . . .
wavelength of the electric field, the wave propagation
comes two-dimensional and the Helmholtz equation redu
to the scalar wave equation

S D1
v2

c2 D fv~x,y!50, ~5!

with Dirichlet boundary conditions@7#, which is equivalent
to the time-independent Schro¨dinger equation for the quan
tum billiard. There are only transverse-magnetic~TM!

modes with the electric field vectorsEW v(rW)5fv(x,y)eW z .
This means that experiments~see, e.g.,@8–11#! where the
eigenmodes of such a cavity are determined serve as an
computers that solve the stationary Schro¨dinger equation for
a quantum billiard of the same shape. In the present exp
ment, as in previous ones at Darmstadt~see, e.g.,
@9,10,12,13#!, a superconducting cavity is used. The qual
factorQ5 f /D f , whereD f is the width of a resonance at th
frequency f, of 104, . . . ,105 is larger than in the norma
conducting case (Q'103) and therefore allows a better iden
tification of resonances in the spectrum~Fig. 2!. The cavity
resonator~Fig. 1! consists of a bottom, an inset, and a lid. T
ensure proper electric contact at high frequencies, wire
solder are placed between the parts of the billiard, which
then sandwiched between two steel plates. All parts
squeezed by screws. The billiard itself is made from cop
and has a lead/tin surface, which becomes supercondu
at temperatures below 7.2 K. In the experiment the reson
is cooled to 4.2 K in a cryostat with liquid helium, where
remains at constant temperature and pressure for se
days. The microwaves are coupled into the cavity by dip
antennas, which are connected to a RF source by microw
cables. There are four antennas, which reach into the bill
through small holes in the lid. The reflected power for ea
antenna and the transmitted power for each antenna co
nation is measured for the frequency range from 1.25 to
GHz in steps of 10 kHz, so that ten different spectra
obtained. The signals are analyzed by a HP-8510C netw
analyzer. The network analyzer is controlled by a perso
computer, which also stores the data. The experimental s

FIG. 2. Part of a spectrum measured atT577 K andT54.2 K.
The superconducting cavity atT54.2 K has a higher quality facto
and the spectrum hence shows an improved signal-to-noise ra
-
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trum shows the expected singlet-doublet structure~Fig. 2!.
This means that the mechanical imperfections of the ca
and the perturbative influences of the antennas, which
always present in an experiment and even necessary h
cause doublet splittings which can be resolved within
frequency resolution of our setup using a superconduc
microwave cavity with a high quality factor. Typical split
tings are in the range from 0.5 to 3.0 MHz. For the inves
gated spectrum from 1.25 to 25.0 GHz there is no evide
for a systematic dependence of those splittings on freque
The values of the splittings simply scatter around the me
Altogether 622 levels up to a frequency of 25 GHz have be
identified. This is in good agreement with the number
modes expected from the dimensions of the billiard and
dicates that in principle each doublet splits up into two in
vidual resonances. For frequencies higher than appr
mately 25.5 GHz the wave propagation inside the cavity g
three-dimensional and no longer serves as a simulation
quantum billiard. In order to separate singlet and doub
modes correctly the distance of the two following resonan
is considered. If it is bigger than a maximum value, the t
resonances are not regarded as parts of one doublet. If t
are three resonances close together the pair with the sm
distance is counted as a doublet. By taking a value of 8 M
for the maximum splitting the levels are divided into 19
singlets and 213 doublets. As Fig. 3 indicates the maxim
splitting is not a critical parameter, because the numbe
doublets almost saturates for values larger than 6 MHz.
influence of the assumed maximum splitting will be d
cussed later on. Each level sequence$ f i% of singlets and
doublets defines a level density functionr( f )5( id( f 2 f i)
for the spectrum. By integration a staircase function

N~ f !5E
0

f

r~ f 8!d f85Nsmooth~ f !1Nf luct~ f !, ~6!

which consists of a smooth and a fluctuating part, follow
The smooth part is given by the Weyl formula

NWeyl~ f !5v1f 21v2f 1v3 ~7!

for two-dimensional systems and carries no information
the dynamics of the system. It describes the mean beha
which only depends on area and perimeter of the billia
cavity @14#, while the fluctuating part contains the releva
information. The fluctuating and the smooth part are se
rated by fitting the Weyl formula to the staircase functi
with parametersv1 , v2, andv3. For further statistical analy-

.

FIG. 3. Total number of doublets depending on the value ta
for the maximum splitting.
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sis and comparison with theoretical predictions the spe
have to be unfolded. By using the transformatione i
5NWeyl( f i) this procedure leads to spectra$e i%, with con-
stant mean level densities and mean level spacings nor
ized to 1. First a nearest-neighbor distribution~NND! is con-
sidered. It shows the distributionP(s) of the spacingssi
5e i 112e i between two neighboring levels. Both GOE a
GUE statistics imply level repulsion and show a maximu
of the corresponding spacings distributions at the value
the mean level spacing. This can be seen from the NNDs
the singlet and the doublet spectra~Fig. 4!. A different be-
havior of singlets and doublets according to GOE and G
can be recognized, although it is difficult to distinguish b
tween GOE and GUE statistics by eye. By fitting the cur
P(s)5c(a)sa exp@2b(a)s2#, which generalizes the spacing
distributions of GOE and GUE, with one fit parametera (b
andc depend ona and are fixed due to normalization! to the
NNDs the different statistical properties of singlets and d
blets can be seen more clearly~Fig. 4!. The fit gives a
50.9060.18 for the singlets anda51.8860.09 for the dou-
blets, to be compared witha51.00 anda52.00 for GOE
and GUE, respectively. A sometimes more sensitive anal
of the so-called short range correlations of the spectra is
integrated NNDI (s)5*P(s)ds. In a logarithmic plot~upper
part of Fig. 4! small deviations from random matrix theor
predictions appear. To discuss the long-range correlation
the spectra, the Dyson-Mehta statistics@2,15# is considered.
As can be seen from the upper half of Fig. 5, the doub
follow GUE up to L'30 and show an increase of theD3
statistics for larger values ofL. Such an increase can also b
seen for the singlets, which follow GOE up toL'8. Then

FIG. 4. Nearest-neighbor-spacings distributions~bottom! and in-
tegrated NNDs~top! for singlets and doublets.
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nonuniversal behavior sets in. Furthermore there is no s
ration behavior. When varying the parameter taken for
maximum splitting of the doublets, this behavior does n
disappear. To get a deeper insight, the two sets of eigen
ues have been compared with a numerical simulation for
corresponding quantum billiard entirely in the spirit of@16#.
The comparison shows that about 600 calculated levels
clearly be identified in the experimental spectra. It also c
be seen that for some frequency ranges the quality facto
the cavity still is not high enough to resolve all resonanc
Therefore some triplets, which occur when a singlet an
doublet are close together, cannot be resolved as three
nances. There are some missing and extra modes, too
particular, it is sometimes not possible to distinguish b
tween singlets and doublets, and pairs of singlets app
which are taken for doublets because of a small distan
Furthermore, some doublets show no splitting. With the h
of the calculation, however, the few necessary correction
the measured set of eigenfrequencies can easily be m
Finally a total number of 623 levels results, with 207 single
and 208 doublets. The Dyson-Mehta statistics shows per
agreement with theory when the results of the compari
are taken into account~Fig. 5, lower half!. This reflects the
sensitivity of the long-range correlations on missing or m
interpreted levels, which usually do not effect the short-ran
correlations~see, e.g.,@17#!.

The anomalous spectral statistics of a chaotic triangu
billiard was studied by an experiment with a supercondu
ing microwave cavity providing the necessary frequen
resolution to resolve doublet splittings, which allowed us

FIG. 5. Dyson-Mehta statistics for the raw spectra~upper part!
and for the corrected spectra~lower part! showing GOE statistics
for the singlets and GUE statistics for the doublets.
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separate the eigenvalues of states with different quan
numbers. The measured spectrum contains approximatel
same number of singlet and doublet modes. About 95%
the resonances were identified clearly, and a compar
with a numerical calculation allowed us to fix the remaini
5% of problematic cases. As a result, GUE-like statistics o
time-reversal invariant system’s spectrum was observed
perimentally. The discussed experiment gives an experim
tal proof of the predictions developed in@5#. It should be
mentioned here that another experiment was done wit
of
m
the
of
on

a
x-
n-

a

cavity with threefold symmetry and extra mirror symmetrie
This cavity is presently being investigated and the prelim
nary data seem to indicate that the doublets show GOE
tistics because of the different symmetry properties. This
in agreement with@5#, as well.

We would like to thank O. Bohigas and T. Seligman f
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schungsgemeinschaft~DFG! for supporting this work under
Contract No. Ri 242/16-1.
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